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Crossover from XY critical to tricritical behavior of heat capacity
at the smecticA —chiral-smectic-C liquid-crystal transition
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High resolution ac calorimetric measurements have been carried out for two liquid-crystal systdms: 4-
methylheptyloxycarbonyl phenyl 4 -octyloxybiphenyl-4-carboxylate(MHPOBC), and 2-fluoro-4{(1-
trifluoromethy) undecyloxy carbony} phenyl 4 -(dodecyloxy biphenyl-4-carboxylate(12BIMF10). The
heat-capacity anomaly around the smeétitd the chiral-smecti€ transition has been analyzed in detall. It is
revealed that the heat anomaly for both systems shows a crossover from three-dimetioridal behavior
to tricritical behavior. All the data are described well with a crossover function which has been obtained from
a modification of the original Rudnick-Nelson-type express[@1063-651X%96)50107-§

PACS numbgs): 64.70.Md, 61.30-v, 64.60.Fr, 65.20-w

Tricritical systems provide an attractive example with atheoretical predictions has been quite limited. As for the
marginal dimensionalityd,=3, and have been a focus of Ising systems, metamagnets Fe€8] and Dy;Al 50, [4]
intensive studies in the field of critical phenomdrdd. Of  are such examples. ThéHe-*He mixture is the onlyXY
particular interest is to describe the crossover from tricriticalsystem for which detailed analyses of the crossover behavior
to ordinary critical behavior. When the tricritical point is have been madgs]. The nematic ) to smecticA (Sm-
located very close to, but not on the experimental path, triAA) liquid-crystal transition is another example of a three-
critical behavior is observed far away from the transition,dimensional(3D) XY system which also exhibits tricritical
which changes into ordinary critical behavior in the vicinity behavior, and the crossover has been studied for several
of the transition. According to the scaling theory, the singu-c25€86—8]. It was found, however, that both heat-capacity

lar part of the free energy for example takes the form and c_orrelation length data are \_/veII described by a single
effective exponent value over a wide temperature range, sug-

Fsngt,g)=|t|?>~ “d(g/|t]|?), (1)  gesting that the crossover is too broad.

In this paper we report the results of the crossover-scaling
wheree, is the tricritical exponent of the heat capacifyjs  analyses of recent heat-capacity data on two liquid-crystal
the crossover exponerf,=(T—T.)/T.] is the reduced tem- systems that exhibit a smectic{Sm-A) to chiral-smectic-
perature, andy is the scaling field. Far away from the tran- C (Sm-C*) phase transition. It is revealed that the heat-
sition region the crossover function approaches a constamfapacity anomaly at the S#—Sm-<C* transition shows a
value®(0) and thereforé°"9 behaves tricritically. Near the universal crossover from 3BY critical behavior to Gauss-

A line, the behavior ofF*" is governed by the crossover ian tricritical behavior as a function of temperature.
function ®. Various theoretical attempts have been reported One of the systems studied here is (14-
to describe the crossover behavior, including an explicit calmethylheptyloxycarbonyl phenyl 4'-octyloxybiphenyl-4
culation of the crossover function by Nelson and Rudnick-carboxylate (MHPOBC), which exhibits the following
[2]. On the other hand, experimental verification of suchphase sequend®]:

391.6 K 392.4 K 394.1 K 395.2 K 421 K
Sm-CZ — Sm-C’; — Sm-C* < Sm-CZ — SmMA < |.

Here SmC} and SmE?, are antiferroelectric, Sre* are ferroelectric, and Sr@, are ferrielectric phases, respectively. The
other system is 2-fluoro-f{1-trifluoromethy) undecyloxy carbony} phenyl 4'-(dodecyloxy biphenyl-4-carboxylate
(12BIMF10, which exhibits the following phase sequenid®:

325.1 K 325.4 K 326.3 K 328.6 K 342.8 K
Sm-CX — FIL < FIH < Sm-CZ; ~— SmMA « |I.

Here, FIL and FIH are ferrielectric phases. vicinity of the SmA-Sm<C? transition in Fig. 1 for
The heat capacity was measured using an ac calorimetgiHPOBC[13], and in Fig. 2 for 12BIMF10. Small anoma-
as described elsewhefgl,12. After subtracting the normal lies are seen at 394.8 K and 392.7 K in MHPOBC, and at
part, the excess heat capacityC, has been plotted in the 326.9 K in 12BIMF10, which are due to the restructuring
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FIG. 1. Temperature dependence of the anomalous heat capacity FIG. 2. Temperature dependence of the anomalous heat capacity
AC, of MHPOBC. AC, of 12BIMF10.

transitions between the chiral smecBicphases. It was found tained. Fits were made for the data over several ranges, and
that these anomalies have a slight effect on the analyses. THmax Shown in Table | is the maximum value fif used in
avoid this, the anomalies have been eliminated assumingpe fit. It is seen that the value depends significantly on the
normal cusplike behavior. The details of this procedure willfitting range, indicating that the anomaly shows a crossover
be described in a future publicati¢h4]. behavior. In particulara seems to approach the 3RY
First, theA C,, data have been analyzed with the following value axy=—0.0066[15] in the small|t| limit, while it
renormalization-group expression including the correctionsmoves to the direction of the tricritical value,=0.5 for

to-scaling termg15]: larger [t] max-
Next we analyze theAC, data with crossover scaling
AC,=A"|t|"*(1+D1[t|*1)+B, (20 theory. Using an expression of Rudnick-Nelson typgas

the crossover function and adding a constant term which is
wheret=(T—T,.)/T. is the reduced temperature, and theneeded in describing the heat-capacity data, we obtain
superscriptst denote above and beloW,. The exponent
a was adjusted freely in the least-squares fitting procedure. AC,=A"[t|"*(1+a"|t| Y9 +B. ()]
The correction-to-scaling exponefyt, is actually dependent
on the universality class, but has a theoretically predicte
value quite close to 0.8.524 for 3DXY, and 0.496 for the
SD Isjng model[15]). Therefo're, we fixed its value at. 0.5in AC,=A*|t| *+B (4)
this fitting procedure. There is usually a narrow region very P
close toT. where data are artificially rounded due to impu- ¢, lt|>1, and
rities or instrumental effects. The extent of this region was
carefully determined in a manner described elsewh&éé ACpEAi(ai)w|t|*(w/2)7“t+ B (5)
and data inside this region were excluded from the fitting.
The rounding region thus determined is4x10°°  for |[t|<1. However, it is easily seen that this expression
<t<+1Xx10 ° for MHPOBC, and —10xX10 °<t<+1  cannot be applied to the present case of the crossover from
X 10°° for 12BIMF10. Table | shows the values of the criti- the 3D XY value ayy=—0.0066 to the tricritical value
cal exponente, and other adjustable parameters thus ob-w;=0.5. The critical amplitude should be negative in the

JVe have assumeg=1/2. This expression is approximated
as

TABLE |. Least-squares values of the adjustable parameters for fitihg with Eq. (2). Here,»=N—p, with N being the number of
data points ang the number of free parameters. The units A6r andB, are J K g~ 1.

System [t| max T (K) @ A" ATIAT D; D, B¢ v %

MHPOBC 0.0003 396.086 0.01 1.8280 1.116 0.43 -1.75 -1.9519 33 0.93
0.0005 396.085 0.07 0.1487 1.751 2.63 -4.44 -0.2326 64 0.97
0.0010 396.085 0.09 0.0944 1.969 3.43 -4.30 -0.1654 136 0.96
0.0025 396.086 0.14 0.0302 2.877 1.00 -5.63 -0.0532 367 1.37
0.0100 396.087 0.18 0.0137 3.866 -5.06 -6.52 -0.0109 874 1.39

12BIMF10 0.0005 329.071 0.03 0.9834 1.332 1.72 -3.25 -1.2334 94 2.24
0.0010 329.072 0.10 0.1197 2.389 3.30 -6.65 -0.2260 199 1.87
0.0030 329.073 0.17 0.0282 4.072 -2.07 -8.18 -0.0488 533 2.16

0.0100 329.073 0.23 0.0116 5.394 -8.31 -8.05 -0.0056 1122 4.38
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TABLE II. Least-squares values of the adjustable parameters for fiftig with Eq. (10). Equation(11) or (12) has been used as
ACFL)a”da“. T. = 396.085 K in MHPOBC, and; = 329.072 K in 12BIMF10]t|,ax = 0.01 in every case. The units f&, L, andB are
JK1g™%.

System Eq. A" A a’ a” B b L XY X2

MHPOBC 11 -2.3024 -2.1161 0.136 0.209 2.2818 0.0225 0.00459 0.91 3.04
12 -2.3039 -2.0568 0.132 0.209 2.2836 0.0316 0.00924 0.89 1.80

12BIMF10 11 -4.0959 -3.7230 0.077 0.120 4.0663 0.0210 0.00906 0.90 3.14
12 -4.2313 -3.7012 0.068 0.110 4.2041 0.0255 0.01611 0.87 1.55

XY regime, and positive in the tricritical regime. On the Acta”dauz L(|t|+b2)’1’2. (11)

other hand, Eqq4) and(5) imply that the amplitudes for the

two regimes have the same sign. On the other hand, the situation is different in the presence of

The above situation is not so surprising because(Bg. an appreciable fluctuation effect. WhieC;2"*®behaves as
describes only the leading behavior, while nonsingular terms- |t| =12 for large |t|, the distinction between the Landau
become important whea<0. One way to remove this dif- part and the critical part becomes unclear Bsis ap-
ﬁCU'ty is as follows. If we start from the temperature deriva- proached, and probabwclﬁandau merges into the constant
tive of AC,, the crossover occurs between the exponenpackground. One possible form which satisfies this require-
valuesayy+1=0.9934 andy,+1=1.5, the amplitudes be- ment is
ing both positive. Therefore, we can use the following form:

dAC, - _ ACkAnaL (12
dTP:A:|t|—1.5(1+a:|t|—1/2)—1.013g (6) p 1+b|t] 12

) _ _ ) ) We tried both Eqgs(11) and(12), and the results are shown
By integrating this expression, we obtain in Table IIl. To be consistent with the scaling requirement,
we further assumed that the nonsingular partAig, has
equal value just above and beloW., and therefore
B=B +L/b=B". For all cases shown hejg,,,,=0.01. In
these fits, it was often found that some parameters could not

AC,=A"(1+a~|t| 1300132, (7)

which is approximated as

Acpz—0.0132Aiai|t|‘1’2+(Ai+B) (8)  be determined precisely due to strong correlation between
them. Because of this, a constraint was imposed so that the
for [t|>1, and tricritical amplitude ratio which comes from the first term in
Eq. (10) becomes equal to the 3RY Gaussian value,/2
AC,=A"(a") 001331|000% B (9)  [20]. Itis seen that the value of theY amplitude ratia XY is

o _close to the theoretical value 0.9Y15] in every case. The
for |t|<1, thus yielding the correct exponents and the amplisits with Eq.(12) are satisfactory in thg? sense, while those
tude signs in both regimesiote thata™>0). with Eq. (11) are clearly worse. This indicates that the fluc-

Itis seen, however, that Er) contains another difficulty  y,a1i0n effect is so significant th&tC, cannot be written as
concerning the amplitude ratio in th&Y and tricri-

tical limit. Denoting the amplitude ratio in thXY regime
by r*XY, we see from Eq.(9) that r*Y is given as 0.8 ' "'
(A"/AT)(a"/a™)%0%2 Since @/a)%01%%=1 because of - MHPOBC
the smallness of the exponent, the universality’ofimplies
that A~/A* is approximately universal. If we expect that
a~/a” is universal[17], the amplitude ratio in the tricritical -
regime, given byA"a /A*a*, also becomes universal and
contradicts the fact that the tricritical amplitude ratio is ac- >
tually nonuniversal18]. Note that this is also the case in the =
original Rudnick-Nelson-type crossover expression.

The nonuniversality of the amplitude ratio in the heat ca-
pacity of a tricritical system can be ascribed to the Landau L g
part of the heat capacity that exists only beldyw We there-
fore tried the following expression:

0.6 = 12BIMF10

L 1 P | .
1072 107" 10°

AC,=A*(1+a*[t| 17 ~00132 pclanday = (10) It/ (aty?

FIG. 3. Scaling plot of the anomalous heat capadi§, of

If the fluctuation effect is sufficiently weak, the first term in MHPOBC and 12BIMF10 above, . Vertical axis shows¥ calcu-

quH(lc.)) ca:n bﬁ. viewed arl]s aLsmdaII Correc_tl;onigcg:fggalagndaqated with Eq.(13) from AC,, data and the parameter values shown
ehavior. In this case, the Landau contribut in Table Il, and horizontal axis showd|/(a*)?, which is the

simply given by the usual Landau thedd): squared inverse of the scaling variable.
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a simple sum of the critical part and the usual Landau beever. This coincidence is remarkable because, apart from the
havior, as noted already. The parame&ér measures the constant termi=A"+B™" in Eq.(13)] which determines the
crossover temperature, which is given by the conditionbase line and the multiplying factor=(—1/0.0132"A™)
a*|t| ¥~ 1. The fact tha* are smaller in 12BIMF10 than which determines the magnitude of the anomaly, there is
in MHPOBC shows that the transition is closer to the tl’iC-on|y one adjustab]e p&u"&uf’neta‘rF which decides the cross-
ritical point in 12BIMF10. over temperature.

Itis to be noted, if we confine ourselves to the case above | symmary, we have seen that theC, data of
T, that Eq.(10) reduces to Eq(7) and is therefore univer- \HPOBC and 12BIMF10 show a universal crossover be-
sal. Since the crossover function becomes a constant at larg@ior from 3DXY to a tricritical regime as described with a
[t[ limit, we see from Eqs(7) and (8) that we are assuming mogified Rudnick-Nelson crossover function. The Landau

|t 12 contribution had to be taken into account to obtain the cor-
W(at/|t|Y?)=— 5 013&*A+[ACP_(A++B+)] (13  rect amplitude ratios. Because the present result is a 3D
: XY system in which the heat capacity shows a clear cross-

over from critical to tricritical behavior as a function of tem-
perature, it would be of great interest to carry out measure-
|ments on other physical quantities for these materials near
the SmA—-Sm-C* transition.

as the crossover function. We have normaliZedso that it
becomes unity for largét|. Figure 3 shows the experimen-
tally obtained crossover-scaling function. Here the vertica
axis showsV calculated with Eq(13) from AC, data and
the parameter values shown in Table Il, and horizontal axis We wish to thank Professor H. Takezoe for supplying us
shows|t|/(a™)?, which is the squared inverse of the scalingwith high-quality MHPOBC and 12BIMF10 samples. We
variable. The data for MHPOBC and 12BIMF10 fall on a are also grateful to Professor C. W. Garland for helpful dis-
single curve, indicating the universal behavior of the crosseussions.
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